
DD

JFB 29-Apr-99

UML State Diagrams

Fritz Bartlett
07-May-1999

DD

JFB 29-Apr-99

A Simple State
Machine

State 1

State 3

State 2

Initial State

Final State

Self Transition

Event Trigger

Action

Event Trigger

Action

Event Trigger

Action

DD

JFB 29-Apr-99

Definitions

• State Machine
 A state machine is a behavior

which specifies the sequence
of states an object visits
during its lifetime in response
to events, together with its
responses to those events

DD

JFB 29-Apr-99

Definitions

• State
 A state is a condition during

the life of an object during
which it satisfies some
condition, performs some
activity, or waits for some
external event

• Event
 An event is the specification of

a significant occurrence. For a
state machine, an event is the
occurrence of a stimulus that
can trigger a state transition

DD

JFB 29-Apr-99

Definitions

• Transition
 A transition is a relationship

between two states indicating
that an object in the first state
will, when a specified set of
events and conditions are
satisfied, perform certain
actions and enter the second
state. A transition has:

• Transition Components
u a source state
u an event trigger
u an action
u a target state

DD

JFB 29-Apr-99

Definitions

• Self-Transition
 A self-transition is a transition

whose source and target
states are the same

DD

JFB 29-Apr-99

Definitions

• Action
 An action is an executable,

atomic (with reference to the
state machine) computation.
Actions may include
operations, the creation or
destruction of other objects, or
the sending of signals to other
objects (events).

DD

JFB 29-Apr-99

A Simple State
Machine

State 1

State 3

State 2

Initial State

Final State

Self Transition

Event Trigger

Action

Event Trigger

Action

Event Trigger

Action

DD

JFB 29-Apr-99

Advanced States

Entry | Entry Action
Exit | Exit Action

State Name

Entry and Exit Actions

DD

JFB 29-Apr-99

Definitions

• Substates
◆ A substate is a state that is

nested in another state
◆ A state that has substates is

called a composite state
◆ A state that has no substates

is called a simple state
◆ Substates may be nested to

any level

DD

JFB 29-Apr-99

Advanced
Transitions

• Transitions to a composite
state
◆ If a transition is to a composite

state, the nested state machine
must have an initial state

◆ If a transition is to a substate,
the substate is entered after
any entry action for the
enclosing composite state is
executed followed by any entry
action for the substate

DD

JFB 29-Apr-99

Advanced
Transitions

• Transitions from a composite
state
◆ If a transition is from a

substate within the composite
state, any exit action for the
substate is executed followed
by any exit action for the
enclosing composite state

◆ A transition from the
composite state may occur
from any of the substates and
takes precedence over any of
the transitions for the current
substate

DD

JFB 29-Apr-99

Advanced State
Machine

Sub-States

State 0 State 1

State 2

State 3

State Name

Entry | Entry Action Exit | Exit Action

Transition to a
composite state

Transition from a
composite state

Transition from
a substate

Transition to
a substate

DD

JFB 29-Apr-99

An
Implementation

State Table

Transition Table

State

Index

FirstIndex LastIndex ExitActionEntryAction

0 1 Act1 Act2

2 2 None Act3

0

1

2 3 4 NoneNone

State

Events Mask Action NewStateTrans

1

2

3

E1 E1 | E2 2None

E0 & E1 E0 | E1 Act0 1

* ** *

DD

JFB 29-Apr-99

An
Implementation

/*+

 MODULE stateMachine - Sequential State Machine Package Declarations

 DESCRIPTION:
 The stateMachine.h header file contains definitions of external
 interfaces to the state machine package
-*/

#define ssmMask(event) (1<<event)

 enum {SSM_TERMINAL_INDEX = (unsigned short int)-1};
 enum {SSM_NULL_ACTION = NULL};
 enum {SSM_MAX_EVENT = 31};

 typedef void *SsmId_t;

 typedef int (*SsmAction_t)(const SsmId_t stateId, void const *context,
 const unsigned short int action);

 typedef void (*SsmDisplay_t)(char *text);
 typedef unsigned long int SsmEventSet_t;

 /* State table element */

 typedef struct
 {
 unsigned short int firstIndex; /* First index in transition table */
 unsigned short int lastIndex; /* Last index in transition table */
 unsigned short int inAction; /* Entry action index */
 unsigned short int outAction; /* Exit action index */
 } SsmState_t;

 /* Transition table element */

 typedef struct
 {
 SsmEventSet_t events; /* Event value */
 SsmEventSet_t mask; /* Event mask */
 unsigned short int action; /* Action index */
 unsigned short int newState; /* New state */
 } SsmTransition_t;

 extern SsmId_t ssmCreate(const unsigned short int initState,
 const unsigned short int termState,
 const unsigned short int maxIndex,
 const SsmEventSet_t initEvents,
 const SsmAction_t actionFunct,
 void const *context,
 SsmState_t (*stateTable)[],
 SsmTransition_t (*transTable)[]);

 extern int ssmDelete(const SsmId_t stateId);
 extern int ssmEventClear(const SsmId_t stateId,

 const unsigned int event);
 extern int ssmEventSet(const SsmId_t stateId,

 const unsigned int event);
 extern unsigned int ssmExecute(const SsmId_t stateId);
 extern unsigned short int ssmCurStateGet(const SsmId_t stateId);

DD

JFB 29-Apr-99

• Problems with UML notation
◆ When more than one transition

from a state is enabled there is
no method for specifying
precedence

◆ For nested states there is no
method for specifying
precedence of the enclosing or
enclosed state

DD

JFB 29-Apr-99

Example: High
Voltage Channel

Off

On

Offline Disabled

AverageRamp

Holding

Tripped

Paused

